Metastability of solitary roll wave solutions of the St. Venant equations with viscosity
نویسندگان
چکیده
We study by a combination of numerical and analytical Evans function techniques the stability of solitary wave solutions of the St. Venant equations for viscous shallowwater flow down an incline, and related models. Our main result is to exhibit examples of metastable solitary waves for the St. Venant equations, with stable point spectrum indicating coherence of the wave profile but unstable essential spectrum indicating oscillatory convective instabilities shed in its wake. We propose a mechanism based on “dynamic spectrum” of the wave profile, by which a wave train of solitary pulses can stabilize each other by de-amplification of convective instabilities as they pass through successive waves. We present numerical time evolution studies supporting these conclusions, which bear also on the possibility of stable periodic solutions close to the homoclinic. For the closely related viscous Jin-Xin model, by contrast, for which the essential spectrum is stable, we show using the stability index of Gardner–Zumbrun that solitary wave pulses are always exponentially unstable, possessing point spectra with positive real part. ∗Indiana University, Bloomington, IN 47405; [email protected]: Research of B.B. was partially supported under NSF grants no. DMS-0300487 and DMS-0801745. †Indiana University, Bloomington, IN 47405; [email protected]: Research of M.J. was partially supported by an NSF Postdoctoral Fellowship under NSF grant DMS-0902192. ‡Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR CNRS 5208, 43 bd du 11 novembre 1918, F 69622 Villeurbanne Cedex, France; [email protected]: Stay of M.R. in Bloomington was supported by Frency ANR project no. ANR-09-JCJC-0103-01. §Indiana University, Bloomington, IN 47405; [email protected]: Research of K.Z. was partially supported under NSF grants no. DMS-0300487 and DMS-0801745.
منابع مشابه
Solitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملComplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملSolitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010